Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Glob Antimicrob Resist ; 36: 411-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331030

RESUMO

OBJECTIVES: To evaluate the susceptibility of globally pneumonia-causing meropenem-resistant (MEM-R) Acinetobacter baumannii isolates against important antibiotics and estimate appropriate dosages of indicated antibiotics. METHODS: We extracted the 2014-2021 Antimicrobial Testing of Leadership Surveillance database regarding the susceptibility of MEM-R A. baumannii isolates causing pneumonia against important antibiotics. The susceptibility and carbapenemase-encoding gene (CPEG) data of pneumonia-causing MEM-R A. baumannii isolates from patients hospitalized in intensive care units of five major regions were analyzed. The susceptibility breakpoints (SBP) recommended by the Clinical and Laboratory Standards Institute (CLSI) in 2022, other necessary criteria [SBP of MIC for colistin, 2 mg/L, in the CLSI 2018; and cefoperazone-sulbactam (CFP-SUL), 16 mg/L], and the pharmacokinetic and pharmacodynamic data of indicated antibiotics were employed. RESULTS: Applying the aforementioned criteria, we observed the susceptible rates of colistin, minocycline, and CFP-SUL against the pneumonia-causing MEM-R A. baumannii isolates globally (n = 2905) were 93.2%, 69.1%, and 26.3%, respectively. Minocycline was significantly more active in vitro (MIC ≤4 mg/L) against the pneumonia-causing MEM-R A. baumannii isolates collected from North and South America compared to those from other regions (>90% vs. 58-72%). Additionally, blaOXA-23 and blaOXA-72 were the predominant CPEG in pneumonia-causing MEM-R A. baumannii isolates. CONCLUSIONS: After deliberative estimations, dosages of 200 mg minocycline intravenously every 12 h (SBP, 8 mg/L), 100 mg tigecycline intravenously every 12 h (SBP, 1 mg/L), and 160 mg nebulized colistin methanesulphonate every 8 h (SBP, 2 mg/L) are needed for the effective treatment of pneumonia-causing MEM-R A. baumannii isolates.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Pneumonia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Minociclina/farmacologia , Colistina/farmacologia , Colistina/uso terapêutico , Liderança , Farmacorresistência Bacteriana Múltipla , Infecções por Acinetobacter/tratamento farmacológico , Anti-Infecciosos/farmacologia , Pneumonia/tratamento farmacológico
2.
Int J Antimicrob Agents ; 63(3): 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242250

RESUMO

This study examined the geographic distribution of minimum inhibitory concentrations (MICs) of antifungals against Cryptococcus isolates. Data were collected on the MICs of specific antifungals (amphotericin B, 5-flucytosine, fluconazole, voriconazole, posaconazole, and isavuconazole) against various Cryptococcus species for the period 2010 to 2020 from the Antimicrobial Testing Leadership and Surveillance database. Cryptococcus isolates were collected from samples of blood and cerebrospinal fluid (CSF) from patients hospitalized in different regions worldwide. We applied the epidemiological cutoff values (ECVs) of antifungals against various Cryptococcus species to distinguish wild-type (WT) from non-WT Cryptococcus isolates. A total of 395 isolates of Cryptococcus species cultured from blood (n = 201) or CSF (n = 194) were analyzed. C. grubii (n = 270), C. neoformans (n = 111), and C. gattii (n = 11) were the three predominant species causing bloodstream infections (BSI) or meningitis/meningoencephalitis (MME). The proportion of MICs above the ECV (1 mg/L) for amphotericin B among C. neoformans isolates was significantly lower than that among C. gattii isolates (MICs >0.5 mg/L; P < 0.001), as evaluated using the chi-square test. For most isolates of the three predominant Cryptococcus species, the MICs of new triazoles were ≤0.25 mg/L. The MICs of fluconazole and amphotericin B in the BSI/MME-causing Cryptococcus isolates collected from patients hospitalized in the Asia-Western Pacific region and Europe were significantly lower (i.e., the distributions were more leftward) than those in North America and Latin America. Ongoing monitoring of MIC data for important antifungals against cryptococcosis is crucial.


Assuntos
Anti-Infecciosos , Cryptococcus gattii , Cryptococcus neoformans , Endrin/análogos & derivados , Humanos , Antifúngicos/farmacologia , Anfotericina B , Fluconazol/farmacologia , Liderança
3.
Stem Cells Int ; 2023: 7179592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638334

RESUMO

Objectives: Acute respiratory distress syndrome (ARDS) is a critical complication in severe COVID-19 patients. The intravenous infusion (IVF) of umbilical cord- (UC-) mesenchymal stem cells (MSCs), validated to substantially reduce the release of several inflammatory cytokines in vivo, was also shown to exhibit benefits in improving hypoxemia among severe COVID-19 patients. A single dose of IVF-UC-MSCs therapy for severe COVID-19 patients was shown to alleviate the initial ARDS severity, but have 50%-67% case-fatality rates. In Taiwan, few adult patients with severe COVID-19-induced ARDS receiving compassionate adjuvant treatment consisting of either a single dose (1-10 × 106 cells/kg body weight (kg BW)) or three doses (5 × 106 cells/kg BW in each dose) of IVF-UC-MSCs had good outcomes. However, the optimal dosage and rounds of IVF-UC-MSCs administration for the treatment of severe COVID-19 patients with ARDS are undetermined. Methods: We reviewed the 2020-2022 PubMed literature database concerning the clinical efficacy of IVF-UC-MSCs among severe COVID-19 patients. Results: The data of COVID-19 case series in the PubMed literature revealed a notable heterogeneity in the therapeutic dosage (a single dose: 1-10 × 106 cells/kg BW; and three doses: 50-200 × 106 cells/kg BW in each dose) and the post-ARDS days of IVF-UC-MSCs administration (a single dose: 1-12; and multiple doses: 5-14) for the treatment of severe COVID-19-associated ARDS. The survival rates among these severe COVID-19 patients ranged from 50% to 76%. However, an overall rate of 93.1% of significant improvement in hypoxemia was observed for the COVID-19 survivors receiving IVF-UC-MSCs at the initial ARDS stage. Conclusions: According to our analysis, the ideal treatment dosage of IVF-UC-MSCs for severe COVID-19-induced ARDS is likely 5 × 106 cells/kg BW for three cycles within 5 days of ARDS onset in severe COVID-19 patients.

4.
Int J Antimicrob Agents ; 61(5): 106763, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804370

RESUMO

The infections caused by multidrug- and extensively drug-resistant (MDR, XDR) bacteria, including Gram-positive cocci (GPC, including methicillin-resistant Staphylococcus aureus, MDR-Streptococcus pneumoniae and vancomycin-resistant enterococci) and Gram-negative bacilli (GNB, including carbapenem-resistant [CR] Enterobacterales, CR-Pseudomonas aeruginosa and XDR/CR-Acinetobacter baumannii complex) can be quite challenging for physicians with respect to treatment decisions. Apart from complicated urinary tract and intra-abdominal infections (cUTIs, cIAIs), bloodstream infections and pneumonia, these difficult-to-treat bacteria also cause infections at miscellaneous sites (bones, joints, native/prosthetic valves and skin structures, etc.). Antibiotics like dalbavancin, oritavancin, telavancin and daptomycin are currently approved for the treatment of acute bacterial skin and skin structural infections (ABSSSIs) caused by GPC. Additionally, ceftaroline, linezolid and tigecycline have been formally approved for the treatment of community-acquired pneumonia and ABSSSI. Cefiderocol and meropenem-vaborbactam are currently approved for the treatment of cUTIs caused by XDR-GNB. The spectra of ceftazidime-avibactam and imipenem/cilastatin-relebactam are broader than that of ceftolozane-tazobactam, but these three antibiotics are currently approved for the treatment of hospital-acquired pneumonia, cIAIs and cUTIs caused by MDR-GNB. Clinical investigations of other novel antibiotics (including cefepime-zidebactam, aztreonam-avibactam and sulbactam-durlobactam) for the treatment of various infections are ongoing. Nevertheless, evidence for adequate antibiotic regimens against osteomyelitis, arthritis and infective endocarditis due to several GPC and MDR-GNB is still mostly lacking. A comprehensive review of PubMed publications was undertaken and the formal indications and off-label use of important conventional and novel antibiotics against MDR/XDR-GPC and GNB isolates cultured from miscellaneous sites are presented in this paper.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Uso Off-Label , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
5.
Microbiol Spectr ; 10(6): e0296522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314941

RESUMO

To understand the changes of resistance in clinically commonly encountered fungi, we used the Antimicrobial Testing Leadership and Surveillance (ATLAS) database to explore in vitro antifungal susceptibilities against clinically important isolates of Aspergillus and Candida species (collected from intrapulmonary and sterile body areas, respectively). We applied the CLSI antifungal 2020 and the EUCAST antifungal 2020 guidelines. From 2017 to 2020, isolates of intrapulmonary Aspergillus fumigatus (n = 660), Aspergillus niger (n = 107), Aspergillus flavus (n = 96), Aspergillus terreus (n = 40), and Aspergillus nidulans species complex (n = 26) and sterile site-originated isolates of Candida albicans (n = 1,810), Candida glabrata (n = 894), Candida krusei (n = 120), Candida dubliniensis (n = 107), Candida lusitaniae (n = 82), Candida guilliermondii (n = 28), and Candida auris (n = 7) were enrolled in this study. Using the EUCAST 2020 breakpoints, it was demonstrated that amphotericin B and posaconazole displayed poor in vitro susceptibility rates against A. fumigatus isolates (<50% and 18.9%, respectively). In contrast, isavuconazole and itraconazole showed high in vitro potency against most Aspergillus isolates (>92%). Most intrapulmonary Aspergillus isolates exhibited MICs of ≤0.06 µg/mL to anidulafungin. Furthermore, intrapulmonary A. fumigatus isolates collected from Italy and the United Kingdom exhibited lower in vitro susceptibility to isavuconazole (72.2% and 69%, respectively) than those in the remaining ATLAS participant countries (>85%). Higher isavuconazole MIC90s against C. auris and C. guilliermondii (1 and 4 µg/mL, respectively) were observed compared to the other five Candida species. Despite the aforementioned MICs and susceptibilities against fungi, research needs to consider the pharmacokinetic (PK) profiles, pharmacodynamic (PD) parameters, and clinical treatment experience with antifungals against specific Aspergillus species. IMPORTANCE In addition to monitoring the antifungal susceptibilities of clinically important fungi, reviewing the PK/PD indices and the clinical therapy experience of antifungals under evaluation are important to guide an appropriate antifungal prescription. The efficacies of liposomal amphotericin B complex and anidulafungin for the treatment of pulmonary aspergillosis caused by different Aspergillus species need to be periodically evaluated in the future.


Assuntos
Antifúngicos , Aspergillus , Candida , Anidulafungina , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus/efeitos dos fármacos , Candida/efeitos dos fármacos , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...